

WBS 6.5: Muon Phase II Upgrade

Tom Schwarz University of Michigan

US ATLAS Phase II Managers Meeting April 1st, 2015

Baseline trigger requirements for Phase-II

- ► L0 trigger accept rate up to I MHz within 6 μs latency
- → LI trigger accept rate up to 400 kHz within 30 µs latency
- → MDT data integrated into L1 trigger to sharpen muon p_T trigger

Requires the replacement of the front-end electronics for the MDT system

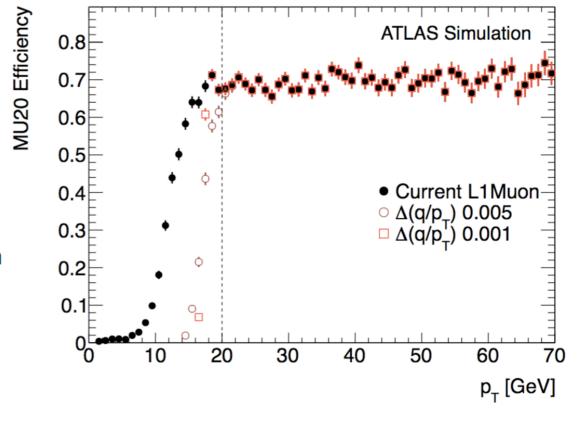
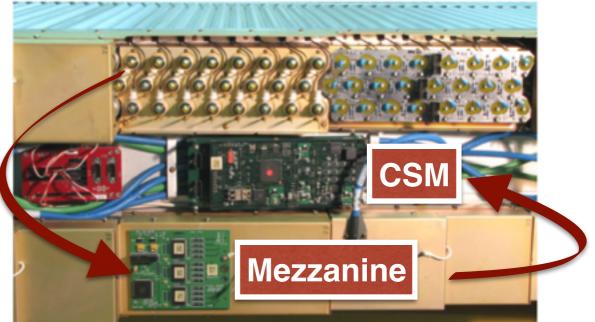
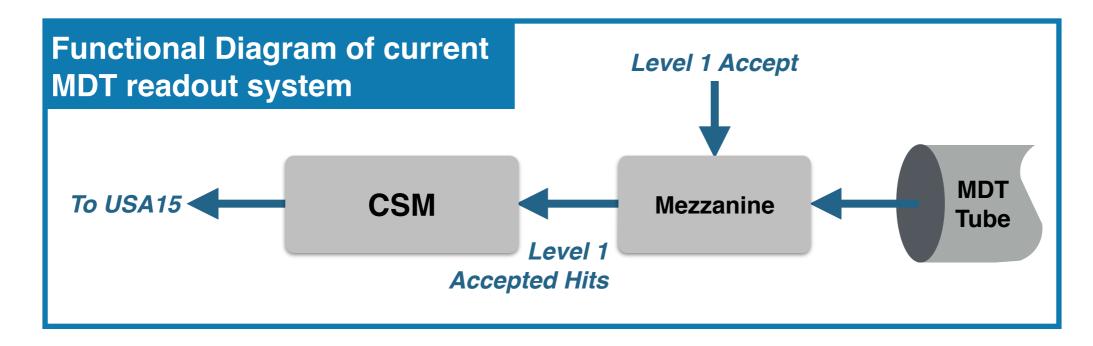



Figure 2: An open chamber of monitored drift tubes (MDT) after assembly.

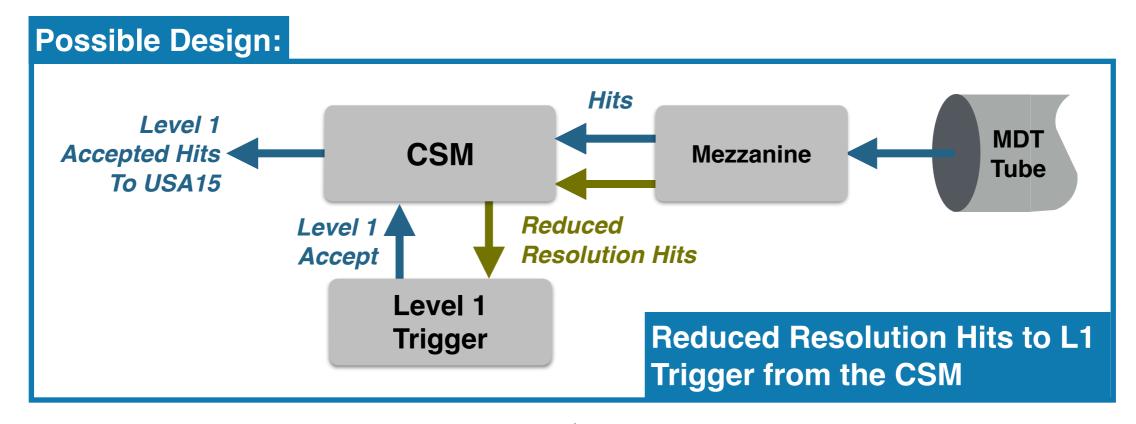


Mezzanine Card

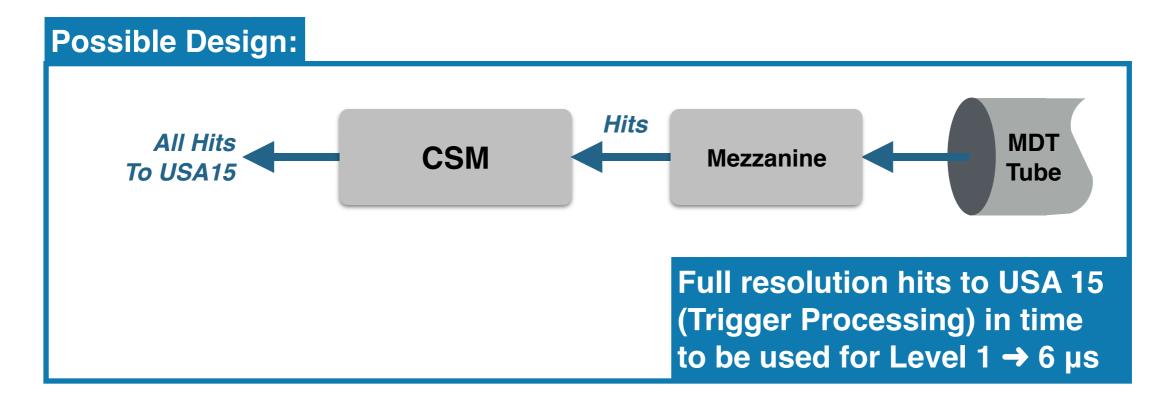
Consists of an ADC and TDC which performs sampling, timestamping, and buffering of candidate Level I hits

Chamber Service Module (CSM)

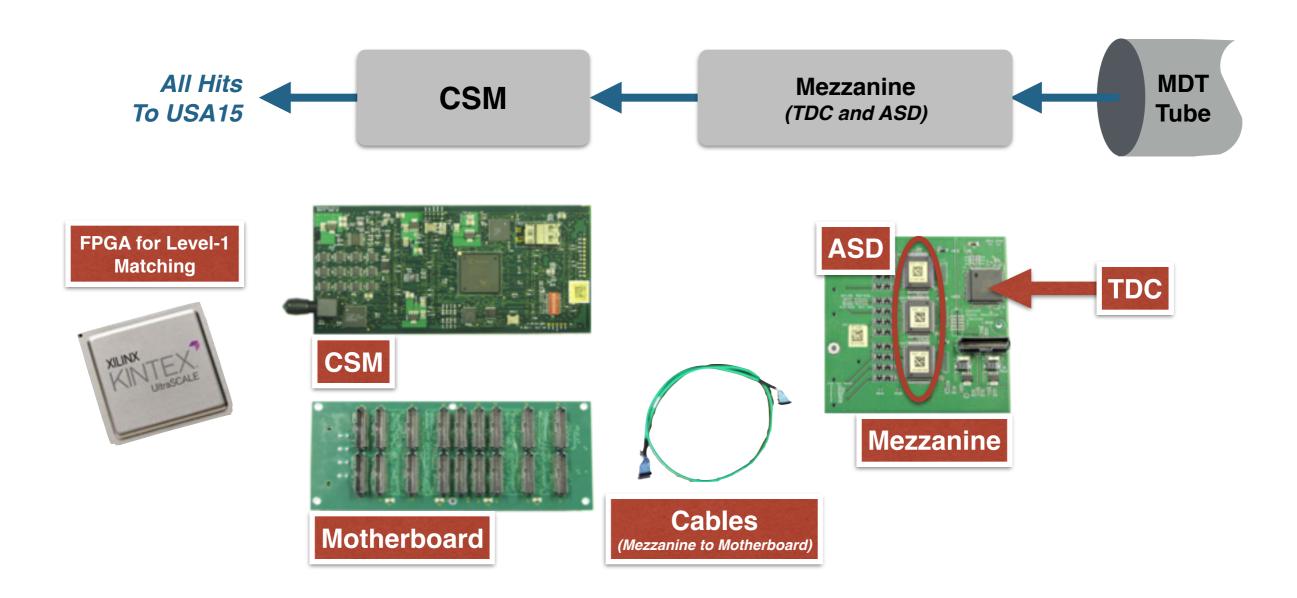
- → Routes Level-I accepted hits to readout at USAI5
- → Passes timing information to the TDC for time-stamping
- → Handles control and monitoring



Two requirements most affecting design


- → L0 trigger accept rate up to I MHz within 6
 µs latency
- → MDT data integrated into L1 trigger to sharpen muon p_T trigger

Two requirements most affecting design


- → L0 trigger accept rate up to I MHz within 6
 µs latency
- → MDT data integrated into L1 trigger to sharpen muon p_T trigger

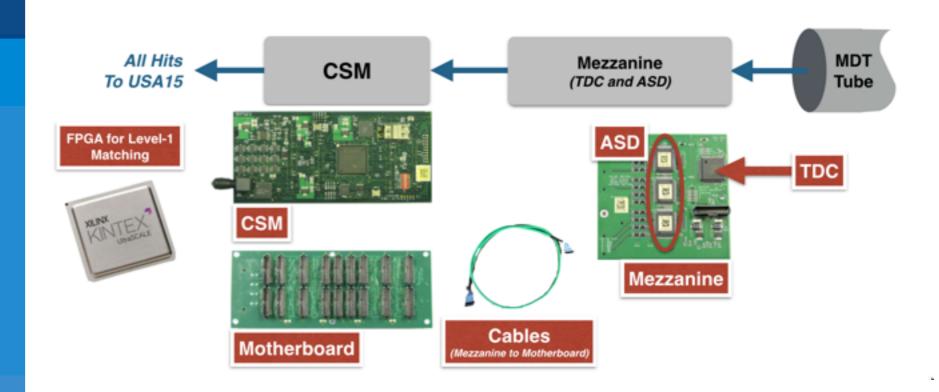
US Deliverables for Phase II in Muons

US Muons are late to the game, and so there's a great deal of uncertainty on what the FULL contribution will be - Below are possibilities

US Deliverables for Phase II in Muons

Deliverable

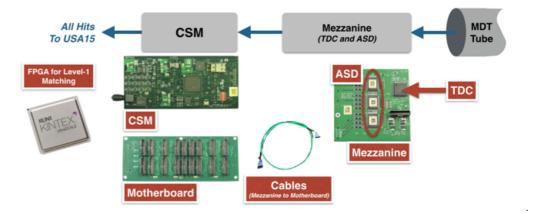
CSM Design/Construction


TDC Design/Construction

ASD Design/Construction

Mezzanine Design and Assembly

Motherboard/Cabling


FPGA to match hits for for Level 1 Trigger (@USA 15)

US Deliverables for Phase II in Muons

Deliverable	WBS#	US Institutions	Non-US	Funded US R&D	Construction Costs
CSM Design/Construction	6.5.1	Michigan		Yes	
TDC Design/Construction	6.5.2	BNL	CERN	sort of	
ASD Design/Construction	6.5.3	BNL	MPI	sort of	US Interests and Costs
Mezzanine Design and Assembly	6.5.4			1	US Intercurrent is
Motherboard/Cabling	6.5.5	Michigan? I hope not		Yes	
FPGA to match hits for for Level 1 Trigger (@USA 15)	6.5.6		Japan?		

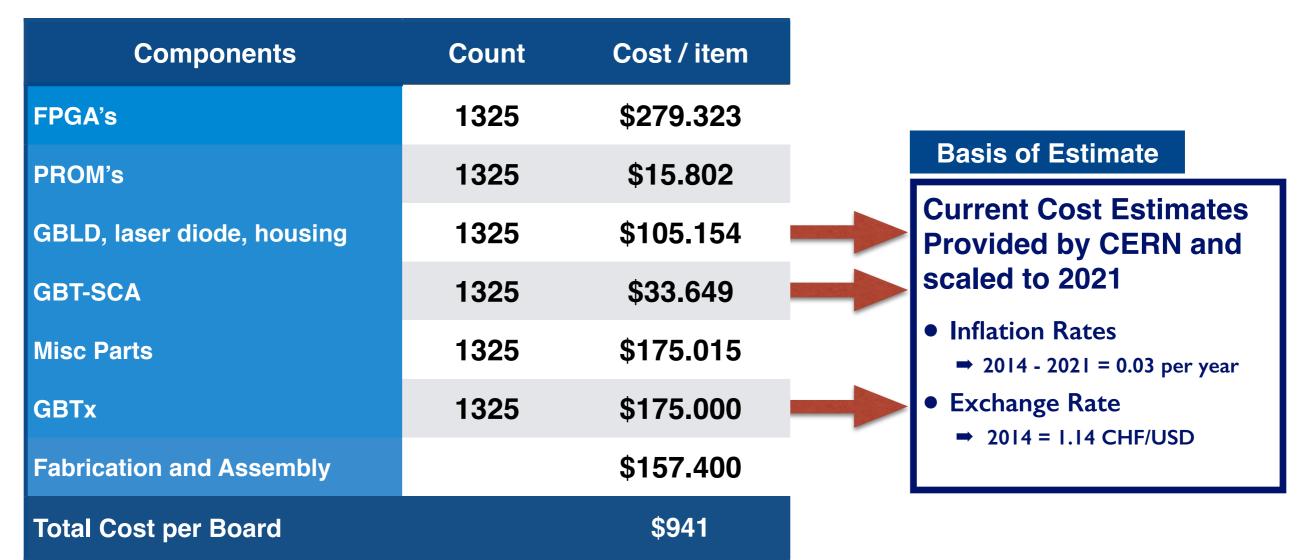
- Starting point is a baseline Phase II design, including new FPGA and replacing some previous electronics with the GBT system of chips
- Assuming similar construction costs to the current ATLAS CSMs, accounting for new components, inflation, and exchange rates.
- Current CSM Construction costs taken from the 2003 ATLAS AGREEMENT 201-05 "Production of CSM electronics for the ATLAS Muons Detector"
- New Components, such as the GBT chips, are taken either from recent listed costs or from estimates of the developer/manufacturer (CERN for GBT)
- Fabrication, assembly and shipping costs per board for Phase II estimated from 201-05 w/ inflation applied
- Inflation Rates
 - \Rightarrow 2003 2014 = 0.26
 - **→** 2014 2021 assumed 0.03 per year
- Exchange Rate
 - → 2003 = 0.74 CHF/USD
 - → 2014 = 1.14 CHF/USD

- There are currently 624 chambers in the barrel and 546 in the end cap, which require 608 and 510 CSM boards, respectively.
- NSW will not require CSM, so subtract 64 CSM
- New chambers (BME/BMR, BOE/BOR, BMG) require 22 additional CSM
- Assume 85% yield and 10% spares \rightarrow Go with same as 2003 = 1325

Components	Count	Cost / item
FPGA's	1325	\$279.323
PROM's	1325	\$15.802
GBLD, laser diode, housing	1325	\$105.154
GBT-SCA	1325	\$33.649
Misc Parts	1325	\$175.015
GBTx	1325	\$175.000
Fabrication and Assembly		\$157.400
Total Cost per Board		\$941

- There are currently 624 chambers in the barrel and 546 in the end cap, which require 608 and 510 CSM boards, respectively.
- NSW will not require CSM, so subtract 64 CSM
- New chambers (BME/BMR, BOE/BOR, BMG) require 22 additional CSM
- Assume 85% yield and 10% spares \rightarrow Go with same as 2003 = 1325

Components	Count	Cost / item
FPGA's	1325	\$279.323
PROM's	1325	\$15.802
GBLD, laser diode, housing	1325	\$105.154
GBT-SCA	1325	\$33.649
Misc Parts	1325	\$175.015
GBTx	1325	\$175.000
Fabrication and Assembly		\$157.400
Total Cost per Board		\$941
		11



Basis of Estimate

- Scaled FGPA costs from 2003
- Additionally compared to costs of modern FPGA's in expected performance class

- There are currently 624 chambers in the barrel and 546 in the end cap, which require 608 and 510 CSM boards, respectively.
- NSW will not require CSM, so subtract 64 CSM
- New chambers (BME/BMR, BOE/BOR, BMG) require 22 additional CSM
- Assume 85% yield and 10% spares \rightarrow Go with same as 2003 = 1325

- There are currently 624 chambers in the barrel and 546 in the end cap, which require 608 and 510 CSM boards, respectively.
- NSW will not require CSM, so subtract 64 CSM
- New chambers (BME/BMR, BOE/BOR, BMG) require 22 additional CSM
- Assume 85% yield and 10% spares \rightarrow Go with same as 2003 = 1325

Components	Count	Cost / item
FPGA's	1325	\$279.323
PROM's	1325	\$15.802
GBLD, laser diode, housing	1325	\$105.154
GBT-SCA	1325	\$33.649
Misc Parts	1325	\$175.015
GBTx	1325	\$175.000
Fabrication and Assembly		\$157.400
Total Cost per Board		\$941

 $1325 \times $941 = $1.25M$

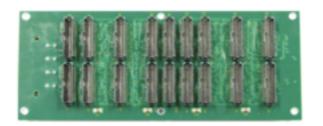
		FY18		FY19 FY20		FY21		FY22			
		%	\$ / hr	%	\$ / hr	%	\$ / hr	%	\$ / hr	%	\$ / hr
	Sr. Engineer	0.5	\$93.48	1.0	\$96.28	1.0	\$99.17	1.0	\$102.15	0.5	\$105.21
Personnel ffort and \$/hr	Jr. Engineer	0.5	\$57.90	1.0	\$59.64	1.0	\$61.43	1.0	\$63.27	0.5	\$65.17
Person Effort a	Elec. Technician	0.5	\$56.85	1.0	\$58.56	1.0	\$60.31	1.0	\$62.12	0.5	\$63.99
Ш	Elec. Student	0.5	\$35.48	1.0	\$36.54	1.0	\$37.64	1.0	\$38.77	0.5	\$39.93

Basis of Estimate

- Standard wages for personnel at Michigan with 3% yearly increase
- Expected personnel levels based on previous experience developing CSM at U-M

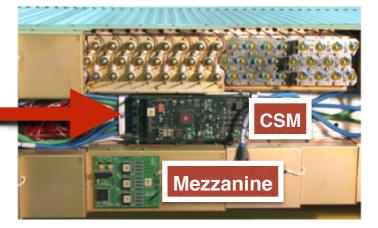
<u>Previous CSM Development Team at U-M</u>

- **→** Jay Chapman (Sr Engineer equivalent) CSM Leader/Firmware Design
- ⇒ Pietro Binchi (Engineer) Board design, left midway through development
- **⇒** Bob Ball (Engineer) CSM Firware, Board design, hired after Pietro left
- → Tiesheng Dai (Engineer) Test fixtures for MiniDAQ, test and debug
- **→** Jon Ameel (Engineer) Production, parts, testing on-site CERN
- ⇒ Jeff Gregor and Tuan Anh Bui (Students) Test and debug, some development


			FY18		-Y19	F	Y20	F	Y21	F	Y22
		%	\$ / hr	%	\$ / hr	%	\$ / hr	%	\$ / hr	%	\$ / hr
	Sr. Engineer	0.5	\$93.48	1.0	\$96.28	1.0	\$99.17	1.0	\$102.15	0.5	\$105.21
nd \$/h	Jr. Engineer	0.5	\$57.90	1.0	\$59.64	1.0	\$61.43	1.0	\$63.27	0.5	\$65.17
Personnel Effort and \$/hr	Elec. Technician	0.5	\$56.85	1.0	\$58.56	1.0	\$60.31	1.0	\$62.12	0.5	\$63.99
ш	Elec. Student	0.5	\$35.48	1.0	\$36.54	1.0	\$37.64	1.0	\$38.77	0.5	\$39.93
		Φ.6	40.444	Φ.4	45.04.4	A 4 4	50.400	.	70.004	^	0.570
	Total Personnel Cost	\$2	216,414	\$4	45,814	\$45	59,188	\$4	72,964	\$24	3,576
40	Travel	\$	88,000	\$	8,000	\$8	8,000	\$8	8,000	\$8	3,000
Costs	Prototypes/Fixtures			\$3	35,000	\$2	20,000				
	Final Production							\$1,2	250,000		
	Shipping							\$3	5,000		
	Total Cost	\$2	24,414	\$4	88,814	\$48	87,188	\$1,7	65,964	\$25	51,576
								1	otal	\$3,2	17,957
										w/out C	

w/out Contingency

Motherboards/Cabling Costs


- Current CSM boards connected to mezzanine through a motherboard which re-routes the large # cables from the mezzanine to more compact pin connectors
 - → Not clear whether these cables/motherboards can handle the increased data rates for Phase-II
 - ⇒ Previously, motherboard was constructed in US ~ \$120/board with inflation/contingency
 - → High-speed cables will range \$15-30 (Halogen Free)
- Much bigger issue is additional labor and time to replace them!

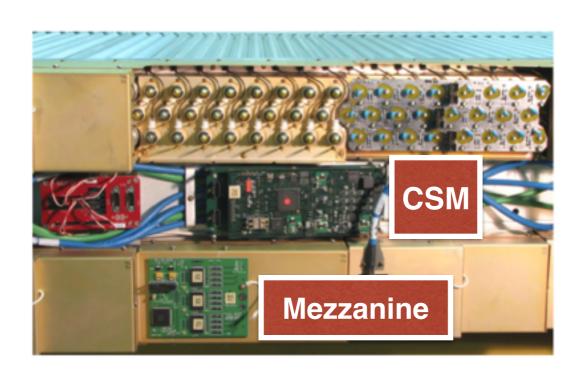
ct

underneath

Front and back of the motherboard which serves to connect the many cables from the front-end boards to more compact pin connectors which attach to the CSM.

Motherboards/Cabling Costs

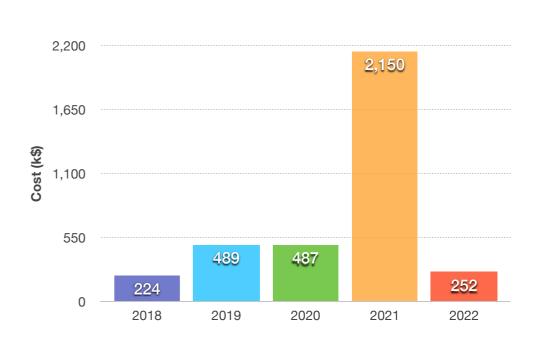
- Current CSM boards connected to mezzanine through a motherboard which re-routes the large # cables from the mezzanine to more compact pin connectors
 - → Not clear whether these cables/motherboards can handle the increased data rates for Phase-II
 - ⇒ Previously, motherboard was constructed in US ~ \$120/board with inflation/contingency
 - → High-speed cables will range \$15-30 (Halogen Free)
- Much bigger issue is additional labor and time to replace them!


	# Cables in Endcap (EM + EO)		Contingency and Spares	\$/cable	Total Cost
8054	5648	13702	15000	17	\$255K


	\$/motherboard with connectors	Contingency 10%	Total Cost
1070	\$111	\$121	\$129K

Motherboards/Cabling Labor Costs

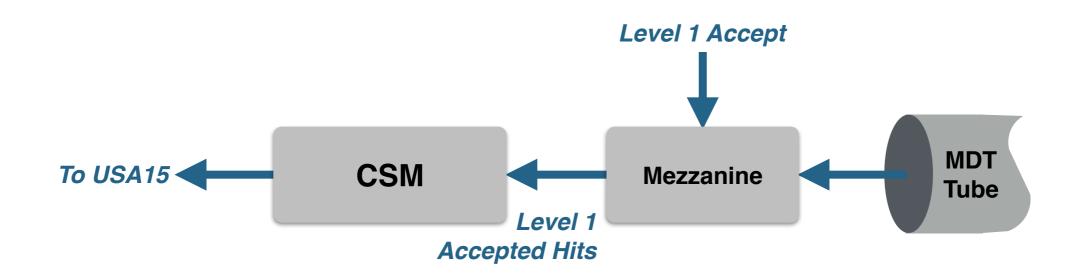
- Not directly a US deliverable, but very much worth mentioning
- In-cavern Effort, assuming three sets of 2-person teams working 24 hrs
 - → Mezzanine and CSM replacement only (~ 40 min/chamber) → Completed in 6.5 weeks
 - **⇒** Cable replacement (additional ~ 90 min/chamber) **→** Completed in 21 weeks

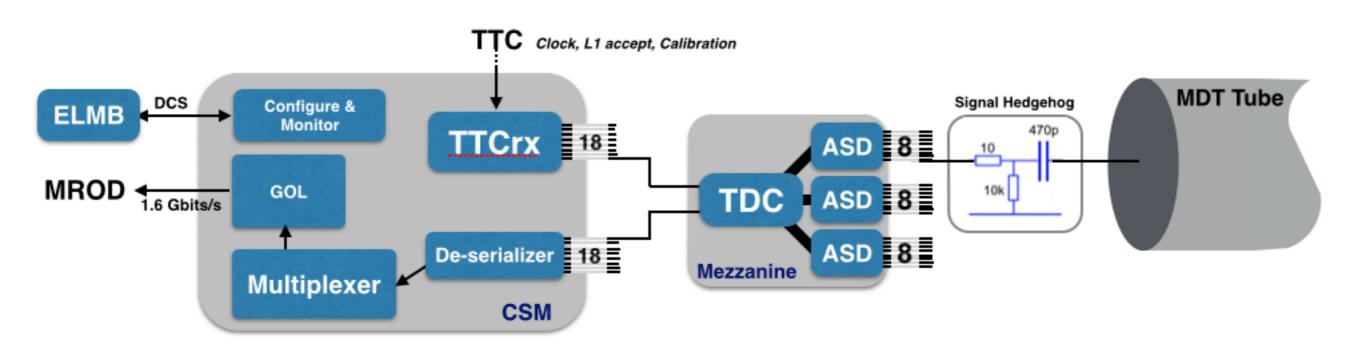

Labor and Material Estimates by Dan Levin

Summary

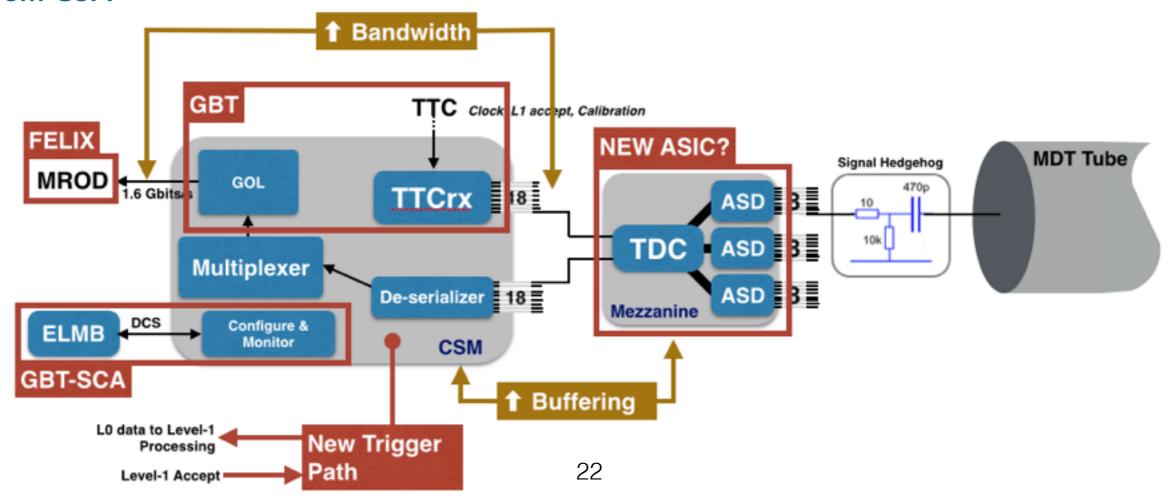
Deliverable	WBS#	US Institutions	Non-US	Funded US R&D	Construction Costs
CSM Design/Construction	6.5.1	Michigan		Yes	\$3,200k
TDC Design/Construction	6.5.2	BNL	CERN	sort of	
ASD Design/Construction	6.5.3	BNL	MPI	sort of	
Mezzanine Design and Assembly	6.5.4				
Motherboard/Cabling	6.5.5	Michigan? I hope not		Yes	\$384k
FPGA to match hits for for Level 1 Trigger (@USA 15)	6.5.6		Japan?		

- → Phase II interest is currently being fleshed out in US Muon community (NSW construction is dominating everyone's focus)
- → Only "known" contribution is the CSM (costs have been estimated)
- → As new Phase II R&D interest is gauged US deliverables will become clear




Backup

Phase II Muon Upgrade


Looking further inside this functional diagram...

Phase II Muon Upgrade

- ➡ Higher bandwidth from TDC's to CSM and CSM to USA 15 and deeper buffers for mezzanine and CSM to handle the higher rates and longer latencies
- New trigger path mezzanine sends pre-trigger data to CSM to be passed to USA15 before Level-0 decision decides to use it or not for Level-1 trigger algorithms
- Timing, Trigger, and Control (TTC) and GOL will be replaced by CERN GBT system
- Configure and Monitoring performed by GBT-SCA
- ➡ Front-end link exchange system (FELIX) will replace ROD-ROS to perform data collection from CSM

Replacement effort off-site:

Dan Levin

- 1. System-wide prep tasks:
 - A. Procurement of cables 1 month
 - B. Design of motherboards 2 month
 - C. Fabrication/procurement of mother boards 2 month
 - D. Design/setup test station for MB + cables 2 month
 - E. Cable prep 7 person-months
 - (print out labels, sort cables, apply to cables for 15,000 cables 5 min/ cable, cable testing)
 - Can be done with 4 students in parallel process in 6 weeks.
 - F. Mother board + cable pre-assembly
 - cable selection , mounting on MB +
 - testing of assembled units = 1/2 hr * 1100 = 3 person-months
 - crating and shipping to CERN 1 week
 - receiving at CERN, storage until installation 1 day

• → total prep tasks Labor only: 10 person-months

Replacement efforts – in cavern

- 1. On chamber tasks removal of the old hardware: 30 70 min/chamber
 - A. positioning the crane or platform 10 min/chamber
 - B. removal of outer Faraday cage shell 5 min/chamber
 - C. removal of old cables
 - remove fasteners: 15 min/chamber
 - remove ground screws & unplug: 15 min/chamber
 - remove motherboard assembly w/old CSM: 20 min/chamber
 - store in box on crane 5 min./chamber
- 2. Install new stuff: 7 60 min/chamber
 - A. mount new motherboard assembly: 20 min
 - B. plug in power supply line & strain relief: 3 min
 - C. route 16 cables & mount strain relief to each mezzanine: 30 min
 - D. install new mezz cards: 1 min
 - E. re-install outer FC shell: 5 min
 - F. plug in cables: 0.25 min

→ 40- 130 min/chamber

- mezz card replacement only
- mezz card + cable replacement